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Abstract In a database, a similar information search means
finding data records which contain the majority of search key-
words. Due to the rapid accumulation of information nowa-
days, the size of databases has increased dramatically. An
efficient information searching scheme can speed up infor-
mation searching and retrieve all relevant records. This paper
proposes a Hilbert curve-based similarity searching scheme
(HCS). HCS considers a database to be a multidimensional
space and each data record to be a point in the multidimen-
sional space. By using a Hilbert space filling curve, each
point is projected from a high-dimensional space to a low-
dimensional space, so that the points close to each other in
the high-dimensional space are gathered together in the low-
dimensional space. Because the database is divided into many
clusters of close points, a query is mapped to a certain clus-
ter instead of searching the entire database. Experimental
results prove that HCS dramatically reduces the search time
latency and exhibits high effectiveness in retrieving similar
information.
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1 Introduction

A database aims to store data objects and provide access to the
content of the data objects. These objects are called records
and are represented in the database by various attributes asso-
ciated with the objects as independent dimensions. There-
fore, the data objects are mapped into a high-dimensional
data space. For example, a text document may be represented
by the word frequencies of a very large vocabulary; images
may be described by features such as shape, colour and tex-
ture. As the cardinality of datasets increases, efficient high-
dimensional data querying becomes increasingly important.
One example of querying high-dimensional data is similar-
ity search. In essence, similarity search is retrieving objects
which are similar to the query object for a given degree. For
example, two records A and B:

A: Ann Johnson 16 female
B: Ann Smith 20 female

Because both A and B contain the keywords “Ann” and
“female”, A and B are similar records, as they contain sim-
ilar information. A few applications of similarity search
include audio and image databases [1], video, text files, fin-
gerprints [2], face recognition [3], and protein sequences [4].
In many cases, the high-dimensional space is Euclidean
space [5]. Given a query object q, a database S of objects
si , the number of objects n, and a metric distance function
d(x, y) (i.e. Euclidean distance computation function), the
objects that satisfy any of the following conditions can be
located as the similar objects of a query object q.

1. The object is closest to the query object q, i.e. {s j ∈
S|∀si ∈ S : d(s j , q) ≤ d(si , q)} (nearest neighbour
query).
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2. The first k objects are closest to the query object q, where
0 < k < n (k-nearest neighbour query).

3. The object whose distance with query object q falls
within a given range r , i.e. {s j ∈ S|d(s j , q) ≤ r} (range
query).

It is well known that effective indexing of the data is nec-
essary for efficient query processing. Because of the curse
of dimensionality [6], indexing high-dimensional data is a
harder problem. Often, as the dimensionality of the space
increases, the difference in the distance between the near-
est and the farthest objects decreases [7]. Searching in a
high-dimensional space can be time consuming. For simi-
larity search, O(n) (n is the number of objects in the data-
base) time is needed to compute the distance between the
query object and every object in the database, which is not
viable for a large database. This has motivated the develop-
ment of efficient similarity search techniques, which can be
roughly divided into two main categories: locality-sensitive
hashing, space partitioning, compression-/clustering-based
search and vector approximation files.

Locality-sensitive hashing (LSH) is a technique for group-
ing data records in multidimensional space into ‘buckets’ [8].
Its key idea is to hash the points using a family of hash func-
tions, so that the probability of close points being hashed into
the same value is much higher than that of distant points.
Space partitioning techniques, such as kd-tree [9], rectangle
tree (R-tree) [10], VP-tree [11] and Bk-tree [12], are common
ways in similarity search. The idea of space partitioning is
to iteratively separate the search space into multiple regions
containing part of the points of the parent region. When a
query is launched, it traverses the tree from the root to a leaf.
At each split, the algorithm evaluates the query point and the
parent node, then visits the subregions that are closer to the
query point. In compression-/clustering-based search [13],
the dataset is first partitioned into similar clusters, and each
cluster is then stored in a sequential file. It builds a map-
ping table to index the clusters, and clusters that are close
to the query point are retrieved into the main memory. The
retrieved data points are examined by calculating the dis-
tance to a query. Vector approximation files (VA-file) is a
special case of compression-based search. It compresses the
feature vectors stored in RAM, which are used to prefilter
the datasets in the first stage, then calculates the distance
between the query and uncompressed data from the disk and
determines the final query results. This method speeds up the
linear search by reducing the number of points needed to be
examined.

To speed up the search, a trade-off between searching
quality and searching latency is offered [14]. An acceptable
degradation in the quality of the searching results can save
searching time. Santini and Jain [15] gave an example of
similarity queries over multimedia data with consideration

of the trade-off. Therefore, a similarity search result may
contain objects that are not similar to the query object, called
false positives. Similarly, an object that is similar to the query
object is named as true positive.

This paper proposes a Hilbert curve-based similarity
searching scheme (HCS) which can cluster records accord-
ing to their similarity. A Hilbert curve [16] is a space-filling
curve [17]. It is used in image processing, especially image
compression and dithering. A Hilbert curve is employed in
HCS because of its local order preservation property. It can
project high-dimensional data points into a low-dimensional
space. HCS assigns a Hilbert number for each record and then
uses the Hilbert curve’s locality-preserving property to clus-
ter similar records. Queries are conducted in the clusters that
have the same Hilbert numbers as the queries. We conduct
experiments to investigate the operation of HCS and compare
the performance of HCS with linear search. The dimension
of the testing dataset is 33,601. Experiment results show that
HCS is an efficient similarity searching scheme. Compared
with linear search, HCS dramatically reduces the query time.

The rest of this paper is structured as follows. Section 2
presents a concise review of similarity searching methods.
Section 3 presents the design of HCS. Section 4 shows the
experimental results. Finally, Sect. 5 draws conclusions and
summarizes the propositions of the HCS scheme.

2 Related work

As the dimensionality of the space increases, the difference
in the distance between the nearest and the farthest objects
decreases [7]. The “curse of dimensionality” [6] makes it
hard to index high-dimensional data. To tackle the “curse
of dimensionality”, various approximate solutions based on
dimensionality reduction have been proposed [8,18,19].

LSH [20] is a method for performing the nearest neighbour
searches. LSH functions are first introduced in [21]. Gionis et
al. [8] used a randomized procedure to create an LSH struc-
ture, which can achieve (1 + ε)-approximation with a con-
stant probability in similarity search. Indyk and Motwani [22]
designed an LSH scheme based on p-stable distributions,
which can find near neighbours with O(log n) complexity.
The efficiency of the LSH scheme based on p-stable distrib-
utions was also proved by Datar et al. [23]. With LSH, close
neighbours of a query point can be determined by retriev-
ing elements with similar hashed values to the query point’s
hashed value. For filtering the search results, the Euclid-
ean distance is computed between the query point and every
retrieved point. The points whose distances are greater than
a predefined threshold are removed from the results. How-
ever, one of the main drawbacks of LSH is the large memory
requirement. Studies show that the basic LSH method needs
a large number of (usually hundreds of) hash tables [8,24] to
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provide good query accuracy for high-dimensional datasets.
As the size of each hash table is proportional to the number
of data objects, so LSH is not efficient in memory space. The
second drawback of LSH is that Euclidean distance compu-
tation leads to long query times and the distance computation
phase is indispensable for LSH in a high-dimensional space.

Another nearest neighbour searching method relies on tree
structures. R-trees were proposed as an extension of B-trees;
they are used as dynamic index structures for spatial search-
ing [10]. An R-tree uses an n-dimensional rectangle that is
the bounding box to bind each data object. Each node of an
R-tree has many entries. Each entry within a non-leaf node
stores the address of a child node and a minimum bounding
rectangle (MBR) of all entries within this child node. Leaf
nodes contain pointers to the data objects and their enclos-
ing rectangles [25]. Since the origin of R-tree introduced in
[10], variants of R-tree have been proposed. The most famous
variant of R-tree is R∗-tree [26], which jointly optimizes the
area, margin and overlap of each enclosing rectangle in the
directory and minimizes the area of each enclosing rectangle
in the inner nodes. Kamel and Faloutsos [27] proposed the
dynamic Hilbert R-tree. Hilbert R-tree makes an ordering of
the data rectangles, and each R-tree node has a well-defined
list of siblings by applying the ordering. The similarity search
tree (SS-tree) is similar to an R-tree. Instead of using MBR,
SS-tree [28] employs minimum bounding spheres (MBS),
which can reduce the requirement for storage. The objects
are grouped together by spheres in a hierarchical manner.
The parent node’s sphere completely bounds all the spheres
of the nodes beneath it in the tree [29]. The square/rectangle
tree (SR-tree) [29,30] utilizes both MBSs and MBRs to rep-
resent the minimum bounding region, which is the intersec-
tion of MBRs and MBSs. A leaf node of the SR-tree con-
tains many entries, and each entry contains a point and its
attribute data. A non-leaf node also consists of a number of
entries. Each entry corresponds to a child node and consists
of four components: a bounding sphere, a bounding rectan-
gle, the number of points, and a pointer to the child node.
This improves search efficiency over R-trees and SS-trees.
However, as reported in [7], the performance of an SR-tree
is not as good as a sequential scan when the dimensionality
is >20.

The M-tree [31] was proposed to organize and search large
datasets from a generic metric space, i.e. where object prox-
imity is only defined by a distance function satisfying the pos-
itivity, symmetry, and triangle inequality postulates. The M-
tree partitions objects on the basis of their relative distances
as measured by a specific distance function and stores these
objects into fixed-size nodes that correspond to constrained
regions of the metric space [31]. All data objects are stored
in the leaf nodes of an M-tree. The non-leaf nodes contain
“routing objects”, which describe the objects contained in the
branches. For each routing object, there is a so-called cover-

ing radius for all of its enclosing objects, and the distances
to each child node are pre-computed. When a range query is
completed, sub-trees are pruned if the distance between the
query object and the routing object is larger than the routing
object’s covering radius plus the query radius. Because a lot
of the distances are pre-computed, the query speed is dramat-
ically increased. The main problem is the overlap between
different routing objects in the same level [32].

VA-file [33] can reduce the amount of data that must be
read during a similarity search. The VA-file does not use
a tree structure, but instead stores an approximation of the
vector of each data object in a sequential file [29]. It divides
the data space into grids and creates an approximation for
each data object that falls into a grid. When searching for
near neighbours, VA-file sequentially scans the file contain-
ing these approximations, which is smaller than the size of the
original data file. This allows most of VA-file’s disk accesses
to be sequential, which is much less costly than random disk
accesses [34]. One drawback of this approach is that the VA-
file requires a refinement step, where the original data file is
accessed using random disk accesses [34].

Machine learning techniques can be applied to make the
hash code of data point more efficient and accurate. Spectral
hashing [35,36] is one state-of-the-art work from data-aware
hashing, with explicit optimization objective over the given
data to minimize the semantic loss resulting from embed-
ding. However, the drawback of spectral hashing lies in its
limited applicability. As Euclidean distance may not accu-
rately reflect the inherent distribution of the data points, it
requires that data points are from a Euclidean space and are
uniformly distributed.

3 Hilbert curve-based searching scheme

The challenge of the nearest neighbour search is to effectively
group similar information into the same cluster. We propose
a Hilbert curve-based similarity Searching scheme (HCS). In
particular, we hash each record in the database to a Hilbert
number. Because a Hilbert curve has a locality-preserving
feature, the Hilbert numbers of similar records are close to
each other. We group records with close Hilbert numbers
(i.e. the difference between two numbers is smaller than a
threshold) into a cluster. For a query record, HCS searches
the cluster of the query’s Hilbert number and locates the
records that have close Hilbert numbers.

In the following sections, we first introduce space-filling
curves. We then describe how to represent a record in n-
dimensional space and how to use the Hilbert curve to map
records from a high-dimensional space to one-dimensional
space and cluster similar records using a hash table. Finally,
we present a similar information-searching process of HCS.
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Fig. 1 An example of a space-filling curve

3.1 Introduction to space-filling curves

Space-filling curves have garnered increasing interest in
recent years due to their uses in practical applications [17,37–
39]. Mokbel and Aref [40] describe a space-filling curve as
a “thread that goes through all the points in a space but vis-
iting every point only once”. Using this mapping, a point in
n-dimensional space can be described by its spatial coordi-
nates, or by the length along the thread, measured from one
of its ends.

There are many space-filling curves available, including
the Peano, Z, Hilbert, sweep, scan, and gray curves [41]. The
Hilbert space-filling curve is believed to achieve the best clus-
tering [42,43]. A Hilbert curve partitions the n-dimensional
space into 2nx grids. n represents the dimensionality of the
space and x controls the number of grids used to partition
the multidimensional space. Figure 1 shows an example of
transforming three-dimensional points into a Hilbert space-
filling curve. The points that are close to each other in three-
dimensional space are still close to each other after being
projected onto a Hilbert curve.

3.2 Multidimensional keyword space construction

A Hilbert curve can transform n-dimensional spatial coordi-
nates of points into one-dimensional indices while preserving
the locality relationship between points. Therefore, to apply
the Hilbert curve to the data objects in a database, all data
objects need to be represented by coordinates in the same
multidimensional space. However, a data object in a database
is represented by a string consisting of a number of attributes,
and the number of attributes in a data object differs for differ-
ent objects. For example, a data object is expressed as “ANN
16 FEMALE 22 MAIN STREET”. This poses a challenge
to representing every object by n-dimensional spatial coor-
dinates (a vector), i.e. to represent each object as a point in
a unified n-dimensional space. The challenge is more formi-
dable if the data are in the form of documents in a database.
To cope with this challenge, HCS constructs a multidimen-
sional keyword space which facilitates representing each data
object by a certain number of coordinates.

A:  (d1, d2, d3) 
d1

d3

Keyword 1 

Keyword 2 

Keyword 3 

d2

Fig. 2 A point in a three-dimensional space

Information retrieval deals with text processing. The vec-
tor space model (VSM) [44] is one such information retrieval
strategy. To retrieve documents relevant to a query, VSM
computes a measure of similarity by defining a vector that
represents each document, and a vector that represents the
query. VSM uses occurrences of keywords from the key-
word list in the document collection to determine the vector
of the document. Consider a document collection with only
two keywords, α and β. Then, there are only two components
in the vectors. The first component represents occurrences of
α and the second represents occurrences of β. If a document
D contains one occurrence of word α and zero occurrences
of word β, its vector is expressed by 〈α : 1, β : 0〉 binary rep-
resentation [45]. Therefore, the vector presentation method
provided by VSM changes a string document into an attribute
vector (i.e. record).

Because the records in a database are described by many
keywords, we use the VSM method to transform each record
into a point in a high-dimensional space. We collect all the
unique keywords of all the records in the database to make a
token list with each keyword representing a coordinate. The
total number of unique keywords is the number of dimensions
in the high-dimensional space. For instance, Fig. 2 shows a
point in a three-dimensional space. Point A in the figure rep-
resents a record in the three-dimensional keyword space. It
means that the number of unique keywords in the database
is 3. The vector of point A is (d1, d2, d3), where d1, d2 and
d3 are the number of occurrences of Keyword 1, Keyword 2
and Keyword 3, respectively. Therefore, the presentation of
a point in n-dimensional space is (d1, d2, . . . , dn). For each
keyword, if it appears in a record equal or more than once, “1”
is marked at the corresponding component in the vector; oth-
erwise, “0” is marked. Given a database consisting of name
and address keywords as shown in Table 1, these records are
transferred into a multidimensional keyword space as shown
in Table 2.

Table 1 Database of names and addresses

Record ID Record

1 TOM SMITH 17 N ELM ST

2 DAVID RUFF 22 MAIN ST
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Table 2 Multidimensional keyword space

ID 1 2

Keywords

DAVID 0 1

ELM 1 0

MAIN 0 1

N 1 0

RUFF 0 1

SMITH 1 0

ST 1 1

TOM 1 0

17 1 0

22 0 1

Consequently, each record in the database is presented
as a ten-bit series of binary numbers, where ten is the
total number of unique keywords. The vector of record 1
is 〈0, 1, 0, 1, 1, 1, 1, 0〉; the vector of record 2 is 〈1, 0, 1, 0,

1, 0, 1, 0, 0, 1〉.

3.3 Hilbert indexing

We use a Hilbert curve (introduced in Sect. 3.1) to map each
vector to a real number, such that the closeness relationship
among the points is preserved. The Hilbert hash function is
used to map a point from n-dimensional space into a Hilbert
number [16]:

h = H(v), (1)

where v is the vector of a record in the database and h is the
Hilbert number. For example, we have records v1, v2, and v3:

v1: ANN 16 FEMALE 22 MAIN STREET
v2: TOM 16 MALE 22 MAIN STREET
v3: JOHN 30 N ELM ROAD.

We can get the vectors of v1, v2, and v3 as follows by the
multidimensional keyword space:

v1: 1 0 1 0 1 0 0 0 1 0 1 0 1 0
v2: 0 0 0 0 1 1 0 0 1 1 1 0 1 0
v3: 0 1 0 1 0 0 1 1 0 0 0 0 0 1.

Then, the vectors of v1, v2, and v3 are input into func-
tion (1) to get their Hilbert numbers h1, h2, and h3.

h1 = H (1 0 1 0 1 0 0 0 1 0 1 0 1 0) = 6,630
h2 = H (0 0 0 0 1 1 0 0 1 1 1 0 1 0) = 6,688
h3 = H (0 1 0 1 0 0 1 1 0 0 0 0 0 1) = 16,243.

Thus, the ten-dimensional vectors are hashed to one-
dimensional integers (i.e. Hilbert numbers). Because v1

and v2 have common keywords “16”, “22”, “MAIN”, and
“STREET”, they are similar records. v3’s Hilbert number is
not close to those of v1 and v2, because it does not have any
keywords contained in v1 and v2, so v3 is not as similar as v1

and v2. From the Hilbert numbers of v1, v2, and v3, we notice
that the difference of Hilbert numbers of similar records v1

and v2 is smaller than the difference of the Hilbert numbers
of v1 and v3. This implies that v2 is closer to v1 than v3.
Consequently, close points have close Hilbert numbers, i.e.
close data records can be clustered together based on their
Hilbert numbers. To look for close records, we only need to
check the closeness of the Hilbert numbers of records.

3.4 Hash-based similar records clustering

Because a massive database has a huge number of records, it
will take a long time to search close records by checking the
Hilbert number of records one by one. Various methods such
as linked lists and search trees are feasible to store records,
but they are complex to implement and maintain. Thus, rather
than reactively searching, we develop a database structure
and searching algorithm to proactively handle close point
queries. Specifically, we cluster the data records into different
groups based on their closeness. That is, the records with
the same Hilbert number are clustered into one group. The
index of a source record is its location in the database, where
the source record can be fetched. We divide a single record
index database into a number of sub-databases, with each
sub-database responsible for a record index group with high
similarity, i.e. with the same Hilbert number. A centralized
location index is used to record the location of each sub-
database in the database and its responsible Hilbert number.
A location index is the Hilbert number of a group of records
in a sub-database.

To insert a data point in the record clustering model, the
Hilbert number of the point is computed first—as an example,
we use 5. Then the location index is referenced to get the
location of the sub-database with Hilbert number equal to 5.
If the location does not exist in the location indices, a new sub-
database with the new index is generated and the location of
the sub-database is added into the location index. If location
index 5 is in the location record, the data point will be directly
stored in the sub-database pointed to by the location link. A
sub-database, which is linked with corresponding hash ID in
the location index, is constructed as a linked list in which all
the records have the same Hilbert number. To store the data
point in the sub-database, we only need to store the index of
the data point at the end of the linked list.

Figure 3 shows the process of inserting a data point into
the corresponding cluster. By using hash function (1), data
point p receives its Hilbert number h p, which is 5. There
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Data point p: 
 <d1, d2, ..., dn> 

Location Index Database 

hp = H(d1, d2, ..., dn)  
    = 5 

2
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5
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Records with h = 2

Records with h = 3

Records with h = 4

Records with h = 5

Records with h = 6

Records with h = 7

Fig. 3 The process of record clustering

is “5” in the location index, so data point p is stored in the
sub-database linked with location index 5. This proactive
data structure and clustering algorithm significantly reduces
the searching cost by eliminating the need to go through the
entire database reactively. A hash table (i.e. location index) is
used for record clustering to save sub-databases. The Hilbert
number of a source record, which is also location index, is
the hash ID in the hash table. The links corresponding to hash
IDs in the hash table point to different sub-databases.

3.5 HCS similarity searching process

With the previously introduced VSM-based record vector
generation method, the similarity between the vectors of two
records remains the same as the similarity of the two records.

A token list has a very large number of unique keywords,
so the dimension of a record vector is large. However, each
record contains only a small number of keywords. Therefore,
in the vector of a record, most positions are 0s. This leads to
sparsity of the record vector. In a high-dimensional space, a
Hilbert curve is sensitive to the sparsity of the record vectors
and it may generate different Hilbert numbers for similar
records. In order not to miss some records similar to the query,
HCS uses multiple token lists to achieve high performance for
similar information searching. HCS first generates m token
lists. All unique keywords in the token lists are in random
order. According to different token lists, a series of vectors
is produced. Because there are m token lists, m vectors are
made for each source record. Figure 4 shows the Hilbert
numbers of a record according to different token lists. T1, T2,
T3, and T4 are the token lists with different keyword orders.
From Fig. 4, we can see that different token lists lead to
different Hilbert numbers for a record. HCS then uses the
Hilbert hash function (1) to get m Hilbert numbers for each
vector. Based on each of the m Hilbert numbers, the indices
of source records are clustered and saved in each of the m
databases.

When querying a record, HCS computes Hilbert numbers
under the different token lists for the query record. Then, it
checks each hash table accordingly, where the Hilbert num-

|CHUCK|COLIN|HAWK||46557|BLACK BIRD|CONCHITA|DA|D603|477|| 

2770334192623024163419040190196980740943051426135969

1524841960784331481191632598300796000607976056005546

2685324329266397095312716873086792384915450930623140

9613705750926653054604464900042724468268391009831869

T1

T2

T3

T4

Fig. 4 An example of Hilbert numbers from different token lists

ber of a record is the hash ID in the hash table. With the hash
ID, the sub-databases that have the same Hilbert numbers as
the query record are easily located, and the records within
these sub-databases are considered to be similar records of
the query record.

Figure 5 shows the process of record clustering and sim-
ilarity searching in HCS. First, m token lists are generated.
Second, according to different token lists, m groups of source
record vectors are produced. Third, each vector is trans-
formed into a Hilbert number using a Hilbert curve hash
function (1). Finally, the indices of the source records are
saved in m hash tables. Each hash table stores the indices of
source records according to the Hilbert numbers, which are
computed from a token list. When searching for records sim-
ilar to a query record q, m vectors of query q are produced
based on the m token lists. HCS then uses hash function (1)
to get m Hilbert numbers for query q. The m hash tables
are checked one by one. The hash table i is checked accord-
ing to the Hilbert number that is computed from token list
i, 1 ≤ i ≤ m. From Fig. 5, we can see that the query record

… 

V1

V3

V2, q

V4

…

Hash table 1 

V1

V2

V3, q

V4

…

    Hash table m 

...

Vectors 1 

Vectors 2 

Vectors 
m

… …

Token 
List 1 

Token 
List 2 

Token 
List m 

… …

Query q

V1

V2

V3

V4

Source Records 

Hilbert 
Numbers 1 

Hilbert 
Numbers 2 

Hilbert 
Numbers m

… …

Fig. 5 The process of record clustering and similarity searching in
HCS
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q has the same hash ID as record v2 in hash Table 4 and the
same hash ID as record v3 in hash table m. Therefore, records
v2, v3, and other records that have the same hash ID as query
q in other hash tables are identified as similar records of q.
Algorithm 1 shows the pseudo-code for record clustering and
similarity searching in HCS.

A range can also be employed to enlarge the search scope.
With the range r , the records with Hilbert number h j that
satisfy the condition |h j − hq | ≤ r are also checked, where
hq is the Hilbert number of a query record. Therefore, more
similar records are located for the query record.

Let us use an example to explain the similarity searching
process of HCS. There are four records in a database and the
query record q is:

v1: Ann Johnson 16 female 248 Dickson Street
v2: Ann Johnson 20 female 168 Garland
v3: Mike Smith 16 male 1301 Hwy
v4: John White 24 male Fayetteville 72701
q: John White 20 female 168 Garland.

Algorithm 1 Pseudo-code for HCS record clustering and
similarity searching.
1: Generate m token lists token_list[1]...token_list[m]
2: for i=1 to m do
3: for each record source[j] do
4: Generate vector v[i][j] according to token_list[i]
5: Calculate hashID[i][j] based on vector v[i][j]
6: if hashID[i][j] does not exist in hash_table[i] then
7: Save hashID[i][j] in hash_table[i]
8: end if
9: Save the index j of record source[j] in the corresponding place

in hash_table[i]
10: end for
11: for each query record query[k] do
12: Generate vector q[i][k] according to token_list[i]
13: Calculate hashID[i][k] based on vector q[i][k]
14: if hashID[i][k] exists in hash_table[i] then
15: Save all the indices linked with hashID[i][k] into result[k][i]
16: else
17: Save null into result[k][i]
18: end if
19: end for
20: end for
21: Unite all the results from the result[k][i]

We generate two token lists for this database. All the
records are transformed into vectors and then Hilbert num-
bers, which are shown in Table 3.

Because there are two token lists, two hash tables are used
to save the record indices according to Hilbert numbers that
are computed from different token lists. Hash Table 4 saves
the record indices according to the computation results from
token list 1, and hash Table 5 saves the record indices accord-
ing to the computation result from token list 2. The two hash

Table 3 Vectors and Hilbert numbers of records

Record Vector Hilbert number

Token list 1

v1 10010010010100110000 35953

v2 10010001010010001000 123662

v3 01001010001001000100 247708

v4 00100100101000000011 525880

q 00100101010010001000 123704

Token list 2

v1 10001001101000100010 493281

v2 01010001001100100000 30476

v3 10000100000010011100 188478

v4 00100010010001010001 998520

q 01010000001101000001 1034252

Table 4 Accuracy

Similarity 53 digits 106 digits 212 digits 424 digits 848 digits

1.0 Y Y Y Y Y

0.9 Y Y Y Y Y

0.8 Y Y Y Y Y

0.7 Y Y N N N

0.6 Y N N N N

0.5 Y N N N N

0.4 Y N N N N

0.3 N N N N N

0.2 N N N N N

0.1 N N N N N

Table 5 The scope of retrieved similar records

Similarity HCS-1 HCS-2 HCS-3 HCS-4

1.0 Y Y Y Y

0.9 Y Y Y Y

0.8 N Y Y Y

0.7 N Y Y Y

0.6 N Y Y Y

0.5 N N Y Y

0.4 N N Y Y

0.3 N N N N

0.2 N N N N

0.1 N N N N

tables are presented in Fig. 6. A record’s hash ID is its loca-
tion index in a sub-database that consists of the record indices
linked with the hash ID. When searching for records simi-
lar to a query record, the hash tables are checked one by
one. We apply the range query in the search, and range r is
set to 50,000. Assume the Hilbert number of q is 123,704
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Hash Table 1 
Hash ID Record 

35953 v1

123662 v2

247708 v3

525880 v4

Hash Table 2 
Hash ID Record 

30476 v2

188478 v3

493281 v1

998520 v4

q 

q 

Fig. 6 Hash tables

for hash Table 4 and 1,034,252 for hash Table 5. When
searching hash Table 4, HCS checks the Hilbert numbers of
source records h j (1 ≤ j ≤ 4). If they satisfy the condition
|h j −123,704| ≤ 5,000, the source records are considered to
be similar to query q. Therefore, v2 is retrieved as a similar
record of query q. When searching hash Table 5, record v4

satisfies the condition |h j − 1,034,252| ≤ 5,000. Therefore,
v4 is similar to query q. HCS combines the query results from
hash Tables 4 and 5, and determines that v2 and v4 are similar
records of query q. Then, HCS calculates the Euclidean dis-
tance to measure the vector distances from located records
and the query and identifies the records whose distances are
less than a predefined threshold as the final similar records.

3.5.1 Analysis of HCS

1. Complexity analysis. As shown in Algorithm 1, vector
generation for each record in step 4 yields a complex-
ity of Λ, where Λ is the dimension of the record vec-
tor. The same complexity is needed in the calculation of
hash ID for each record in step 5. Logarithmic complex-
ity O(log2 τ) applies to steps 6–8 by adopting binary
search in saving hash IDs into the hash table, where τ is
the Hilbert number space. Step 9 needs a constant time
complexity. Steps 11–19 repeat the operations of steps 3–
10. Given that the number of query records is much less
than that of data records, the complexity of Algorithm 1
is roughly O(m × n × log2 τ).

2. Performance analysis. Multiple token lists are used in
HCS to improve the search performance. The more the
token lists, the fewer are the similar records that will be
missed. One question that arises is what percentage of
similar records can be located with a certain number of
token lists? We assume that p is the percentage of similar
records located by using one token list; then, q = 1 − p
is the percentage of similar records not located by using
one token list. Let F(m) denote the percentage of similar
records that can be located using m token lists. Then, we
can get F(n) = 1 − qm . Since q = 1 − p,

F(m) = 1 − (1 − p)m . (2)

Function (2) will help us to find the percentage of similar
records located by different numbers of token lists. We now
perform a theoretical analysis on the impact of m, which
works in the ideal scenario that the token lists are independent
in representing data records. For example, if p equals 0.2 and
m equals 5, F(m) equals 0.67232. This means HCS can locate
20 % of similar records using one token list and can locate
approximately 67.23 % of similar records using five token
lists. More performance analysis such as memory usage, and
number of tokens needed are discussed in Sect. 4.

4 Performance evaluation

We implemented HCS and conducted the comparison of HCS
schemes with different numbers of token lists (denoted by
HCS-k, where k represents the number of token lists). We
compared HCS with linear search, inverted file, kd-tree and
spectral hashing. In linear search, every data record is visited
to compare with the query. In inverted file [46], each data
record is described by a set of keywords, and an inverted
index structure is used to map every keyword to a list of
data records that contain the keyword. We used the Apache
Lucene APIs [47] to write an application that uses the inverted
file method in keyword searching. LSH has two main para-
meters: the number of hash functions chosen from the LSH
family m and the number of hash tables n. We set m = 20
and n = 5 in all our experiments. In spectral hashing, we
used 10 % of the dataset as the training data.

We used three datasets in the experiments. Dataset 1 has
10,000 source records and 33,601 unique keywords (i.e. the
dimension of the dataset is 33,601). This dataset is provided
by a corporation recording the names, gender, address and
other personal information of customers. We randomly chose
97 records as query records. Dataset 2 has 34,513 source
records and 62,223 unique keywords. Dataset 3 is the MIR
Flickr dataset [48] consisting of 1 million fully annotated
images. We used tag data to represent the image and per-
form similarity search on images. We randomly chose 10,000
queries as query records. Unless otherwise specified, we used
dataset 3 in the test.

Because of the high dimensionality of the space, any
Hilbert numbers are huge real numbers, and the difference
of the Hilbert numbers of close records is a huge number. As
an optimization, instead of using the entire Hilbert number,
we only use the first L digits as the Hilbert number of the
record. For example, two records’ whole Hilbert numbers are
2348910847362 and 2348994736208, so the first five digits,
23489, are used as the new Hilbert number. Two records with
the same Hilbert number are considered to be similar. In the
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experiments, we used the first 53 digits of the entire Hilbert
number as the Hilbert number of the record, and we regard a
record with at least one keyword in common with the query
as a similar record, unless otherwise specified.

The metrics we tested are:

• Total query time. This shows the efficiency of a similar
information searching method in terms of search latency.

• Memory consumption. This shows the efficiency of a sim-
ilar information searching method in terms of memory
required.

• Effectiveness rate. A true positive is a located record
which is actually similar to the query record. The effec-
tiveness rate is the percentage of true positives over the
total number of returned records and it is actually the pre-
cision value. High effectiveness rate means that a similar
information searching method can locate similar infor-
mation more accurately.

• The scope of retrieved similar records. This shows
whether a similar information searching method can
locate similar records with different similarities to the
query record.

• The number of true positives with range R. This shows the
number of true positives located with different R ranges.

4.1 Comparison of query times of different schemes

Figure 7 shows the total query time of the linear search
method, kd-tree search method, LSH search method, inverted
file method and HCS. We see that the query time follows
linear > kd-tree > LSH> inverted file ≈ spectral hash-
ing ≈ HCS. The linear search method needs to compare every
record with the query, leading to a much higher query latency.
The kd-tree search method and LSH search method reduce
the query latency using the kd-tree structure and the LSH
hash function family. HCS and spectral hashing only need
to hash the query once and then check the mapped cluster

Fig. 7 Total query time of different similar information search schemes

Fig. 8 The total query time versus Hilbert number length

Fig. 9 Percentage of similar records versus Hilbert number length

to find similar records, leading to the least query latency. In
the inverted file method, every keyword in the query needs
a searching operation, and the results from each individual
search are then integrated to get the final results. Using the
Lucene APIs, inverted file consumes an approximate latency
as that of HCS and spectral hashing.

4.2 Effect of the number of digits in Hilbert numbers

For this experiment, we used dataset 3. Figures 8 and 9 show
the total query time and the percentage of similar returned
records versus the number of digits of Hilbert numbers,
respectively. From Fig. 8, we see that shorter Hilbert number
lengths lead to higher total query times and vice versa. This is
because shorter Hilbert number lengths cause more records
to have the same Hilbert number after the mod operation, thus
requiring more filtering time to derive actual similar records.
From Fig. 9, we see that the shorter lengths of Hilbert num-
bers leads to higher percentages of similar returned records
and vice versa. Since shorter lengths cause more records to
have the same Hilbert number, a greater number of similar
records are returned.

Figure 10 shows the percentages of returned similar
records with different similarities to the query using Dataset
1. The values in Y -axis represent the percentage of records
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Fig. 10 The percentage of returned similar records with different sim-
ilarities for Dataset 1

Fig. 11 The percentage of returned similar records with different sim-
ilarities for Dataset 2

that are returned among all records having a certain similar-
ity with the query (value of X -axis). We see that when the
similarity is larger than 70 %, almost 100 % of the similar
records can be located in HCS with different digits of Hilbert
numbers, i.e. records with higher similarity to the query are
more easily found regardless of the Hilbert number length.
We also see that shorter Hilbert numbers have higher proba-
bilities of locating similar records than longer Hilbert num-
bers due to the reasons explained previously. Figures 11 and
12 show the percentages of returned similar records with dif-
ferent similarities to the query using Dataset 2 and Dataset
3, respectively. We have the same observations as in Fig. 10.

We define accuracy rate as the total number of located
similar records divided by the total number of existing
records. Table 4 shows the accuracy rate for different Hilbert
number lengths. We see that when more digits are used to rep-
resent the Hilbert number of records, fewer similar records
are found and the records with higher similarity can be easily
found. This is due to the same reasons as in Fig. 9.

Figure 13 shows the effectiveness rate for different lengths
of Hilbert numbers. We see that longer Hilbert number
lengths lead to lower effectiveness rates. This is because a

Fig. 12 The percentage of returned similar records with different sim-
ilarities for Dataset 3

Fig. 13 Effectiveness rate with different Hilbert number lengths used

Fig. 14 The percentage of returned similar records

longer length produces a finer granularity of data, thus gen-
erating fewer returned similar records.

4.3 Effect of the number of token lists

Figure 14 plots the percentage of returned similar records
using different datasets. The figure shows that more token
lists help to find more similar records. When the number of
token lists reaches a certain value, a further increase in the
token lists leads to a slight increase in the percentage of sim-
ilar returned records. Dataset 1 needs fewer token lists to
locate all similar records due to the dataset’s smaller dimen-
sion. This experimental result shows that the number of token

123



A locality-aware similar information searching scheme

Fig. 15 Number of similar records returned in Dataset 1

Fig. 16 Number of similar records returned in Dataset 2

Fig. 17 Number of similar records returned in Dataset 3

lists needed to locate almost all similar records varies based
on the dimensions of datasets.

Figures 15, 16 and 17 show the numbers of similar records
returned in Dataset 1, Dataset 2 and Dataset 3, respectively.
Figure 18 shows the percentage of returned similar records
with different similarities. We see that the records with high
similarity with the query can be found regardless of the num-
ber of token lists. However, more token lists are needed to
find the records less similar to the query. Also, we can observe
that by adding more token lists, the number of similar records
returned becomes greater in each similarity area. One token
list can almost locate records with more than 60 % similarity;
12 token lists can locate records with more than 40 % similar-

Fig. 18 The percentage of returned similar records with different sim-
ilarity

Fig. 19 Latency of HCS and the linear search method

ity. With more token lists, the records with lower similarities
to the query can be more easily found.

Figure 19 shows the total query latencies of different meth-
ods. In the figure, HCS-m means HCS with m token lists. The
query speed of HCS is much faster than linear search. HCS
clusters the similar records first, enabling the query to be
directly mapped to specific clusters instead of searching the
entire database. In contrast, the linear search method searches
the entire database and compares each source record to the
query record to find similar records, leading to a much higher
querying latency. We also observe that HCS using more token
lists produces a higher query latency. This is because when
using more token lists in HCS, the time for querying similar
records increases. The increase in the number of token lists
leads to the increase in the number of hash tables for storing
the clustered source record indices. Then, more hash tables
should be checked to query similar records. From Fig. 19, we
also see that when the number of token lists increases by one,
the query time increases by about 0.03 s. Therefore, ∼0.03 s
are needed for searching one hash table.

Figure 20 shows the total query time versus the num-
ber of token lists in HCS. It illustrates that the total query
time increases almost linearly as the number of token lists
increases. This is because adding one more token list means
one more token list needs to be checked during data search.

HCS needs memory for saving token lists, the vectors of
records, and the final hash tables. Figure 21 presents the mem-
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Fig. 20 Latency versus the number of tokens in HCS

Fig. 21 Memory consumption

ory consumption of different parts of HCS. The memory for
storing vectors can be reused to save vectors for different
token lists after hashing the source records into a hash table.
For instance, HCS requires memory for saving the vectors
that are produced according to a token list. After hashing the
records to a hash table, HCS continues to generate another
token list and produces another vector list. Because the vec-
tors of the first token list will not be used subsequently, the
memory for storing the vectors of the previous token list
can be used for the new vectors. Therefore, the memory
consumption required for storing vectors does not change
in the different HCS methods and increases as the number
of keywords increases. From Fig. 21, we can observe that
the memory consumed for saving token lists and final hash
tables increases when more token lists are used. When one
more token list is used, one more final hash table is required
to save the source records. Therefore, the memory required
for saving the token list and final hash tables increases. When
the number of token lists increases by one, about 25,000,000
bytes are required for storing the token list.

Figure 22 shows the memory consumption of HCS with
different numbers of token lists. We see that the memory
consumption increases as the number of token lists increases,
since more hash tables need more memory space. HCS with
12 token lists still consumes much less memory than LSH.

Fig. 22 Memory consumption

Fig. 23 The total number of located records for HCS and linear search

Inverted file consumes the largest memory, due to the reason
that a long inverted list needs to be stored for each keyword
in the inverted index table. The length of inverted list equals
to the document frequency of the keyword, so it consumes
large amount of memory when the dataset is large.

Figure 23 presents the total number of located records
including true positives and false positives in different meth-
ods. When HCS employs more token lists, it can locate more
similar records. Using 1 token list, HCS can locate about 2 %
of the actual similar records; using 12 token lists, HCS can
locate about 30 % of the similar records. However, as more
similar records were located, more false positive were con-
currently generated. The percentage of false positives in the
located records is much lower than the percentage of true
positives. Therefore, increasing the number of token lists
can help to find more similar records, with the side effect
of returning more false positives. We also see that HCS finds
fewer similar records than the linear search method. More
token lists enable HCS to find more similar records. Linear
search and inverted file both yield high true positives, because
they are both exact search methods. However, the accuracy
of linear search is achieved by the cost of longer latency and
larger memory.

To see the degree of similarity located records have to the
query record in HCS, we conducted experiments on HCS
with 1, 2, 3, and 4 token lists. We randomly chose one record
and changed one token to make a new record for the query
each time with the aim of determining if HCS can still find
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the original record with the decreasing degree of similarity to
the query record. Table 4 shows whether the methods can find
the original record when the record has different similarities
to the query record. In the table, “Y” and “N” mean that the
method can and cannot find the original record, respectively.
Given two records A and B, their similarity is calculated with
the following function:

Similarity = |A ∩ B|
|A| . (3)

Table 5 illustrates that HCS can locate the records with low
similarity when more token lists are used. HCS with three
and four token lists can locate the records whose similarities
to the query record are >0.3. HCS with more token lists
generates more Hilbert numbers for each record, it also has a
large scope of possible Hilbert numbers that can be checked.
Thus, HCS with more token lists is able to locate records with
low similarity. The results imply that records having higher
similarities to the query record have a higher probability of
being located than records having lower similarities. Multiple
token lists should be used to locate similar records with low
similarity.

4.4 The number of token lists needed for an expected
percentage of true positives

Since increasing the number of token lists can locate more
similar records, we want to know how many token lists are
needed for locating all the similar records. We conducted
another simulation with the help of function (2). In func-
tion (2), we set the value of p to the percentage of simi-
lar records located by using one token list. As the value of
m increases, a higher percentage of similar records will be
located. Figure 24 shows the expected percentage of true pos-
itives and the percentage of true positives versus the different
number of token lists. The number that is calculated by func-
tion (2) is named “expected percentage of true positives”;
“percentage of true positives” denotes the actual experimen-
tal result. The figure indicates the number of token lists

Fig. 24 The percentage of located similar records for different number
of token lists

needed for locating a certain percentage of similar records.
From the figure, we notice that the percentage of true posi-
tives is consistent with the expected percentage of true posi-
tives. We also notice that with one token list, HCS can locate
about 2 % of similar records, and 100 token lists are needed
for locating more than 99 % of similar records.

4.5 The effect of searching scope R

In addition to checking the hash tables at the exact location
index of a query record, near neighbours in the hash tables
are also checked in our experiment. For example, if a query
record’s hash index is 10 and the range R for checking near
neighbours is 2, then we collect all the records saved in loca-
tions 8, 9, 10, 11, and 12. This near neighbour query increases
the searching range, which can locate the points that are not
very close to the query point. Figure 25 shows the number of
located similar records with different values of R. Figure 26
shows the results without the linear search method. From
the figures, we can see that the number of located similar
records increases as the value of R increases. A larger R can
help to locate more similar records. Increasing the value of R
means more grids can be checked in high-dimensional space
and more points fall in the checking area. This increases the
probability of finding more similar records, because similar
records are close to each other and the differences between
their Hilbert numbers are small.

Figure 27 shows the percentage of returned similar records
versus the searching scope R. We see that as the value of R
increases, the percentage of similar records decreases, while
the percentage of false positives increases. Larger R values
generate more record candidates to check for similar records
to the query. Thus, more false positives are introduced, and
hence the percentage of true positives is reduced. The result
implies that an appropriate R should be chosen to increase
the true positives while minimizing the false positives.

Fig. 25 The number of token lists needed for locating a certain per-
centage of true positives
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Fig. 26 The number of located similar records for different values of
R

Fig. 27 The percentage of returned similar records versus R

5 Conclusions

This paper proposes a HCS. HCS utilizes the Hilbert curve’s
locality-preserving property to effectively group similar
records. HCS treats the records in databases as the points in a
high-dimensional space. It uses a vector to present each point.
A Hilbert curve is used to project points from a multidimen-
sional space to a one-dimensional space. Therefore, the mul-
tidimensional vectors of points can be represented as a single
integer number called a Hilbert number. Hilbert numbers can
reflect the closeness of two records. Finally, the records are
saved in a hash table according to their Hilbert numbers. This
process classifies the records into a cluster based on their
closeness (i.e. similarity). A query record is also assigned a
Hilbert number that can map the query to a cluster. Compari-
son is conducted between the query record and the records in
the cluster and similar records are returned. We further pro-
pose HCS with multiple multidimensional spaces (i.e. token
lists) to improve the similarity searching performance. Sim-
ulation results show the superior performance of HCS com-
pared to the linear search algorithm in terms of query latency.
HCS dramatically reduces the query time and exhibits high
effectiveness in desired information retrieval. In our future
work, we will investigate how to increase true positives and
reduce false positives of HCS in the similarity searching in
a massive database and use parallelism to further improve

the scalability of HCS. Also, we will study how to set the
optimum number of token lists for HCS and how to preserve
the semantics in HCS.
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